OF THE AMERICAN CHEMICAI SOCIETY
 Registered in U.S. Patent Office. © Copyright, 1979, by the American Chemical Society

Vibrational Spectra of Cubane and Four of Its Deuterated Derivatives

E. W. Della, ${ }^{12}$ E. F. McCoy, ${ }^{1 a}$ H. K. Patney, ${ }^{1 a}$ Gerald L. Jones, ${ }^{\text {bb,c }}$ and Foil A. Miller*lb
Contribution from the School of Physical Sciences, The Flinders University of South Australia, Bedford Park, South Australia 5042, and the Department of Chemistry, University of Pittsburgh, Pittsburgh. Pennsylvania 15260. Received April 9, 1979

Abstract

Vibrational spectra are reported for cubane, cubane- d_{1}, sym-cubane- d_{2}, sym-cubane- d_{6}, and cubane- d_{8}. Infrared spectra are from 400 to $3600 \mathrm{~cm}^{-1}$ for CS_{2} and CCl_{4} solutions, and for a solid deposited from the vapor at $\sim 100 \mathrm{~K}$. Raman spectra are for the same solutions and for the polycrystalline solid at room temperature. Vibrational assignments have been made for all the fundamentals of all five compounds, 120 modes in all. The fortuitous crystal structure of cubane and cubaned_{8} was an important aid. Of the 18 fundamentals of cubane, only one or two are not certain. The spectra show almost no effect of the severe bond angle strain. Also there are no low molecular modes; the lowest for cubane is $617 \mathrm{~cm}^{-1}$.

Introduction

Cubane, $\mathrm{C}_{8} \mathrm{H}_{8}$, has the carbon skeleton shown in Figure 1. ${ }^{2}$ It is an exceptionally interesting molecule because of having the unusual cubic C_{8} cage, very high symmetry, and a great deal of strain. The C-C-C angles are decreased from 109.5 to 90° at each of the eight corners, and this might be expected to produce some unusual vibrational frequencies. Hence a thorough study of its vibrational spectrum seemed desirable.

Cubane was first prepared by Eaton and Cole in 1964. ${ }^{3}$ An X-ray diffraction study by Fleischer ${ }^{4}$ showed that, within experimental error, the carbon frame is a cube and the hydrogen atoms lie on extensions of the cube diagonals. The C-C distance is $1.55 \AA$, almost exactly the same as in cyclobutane.

Very little is known about the vibrational spectrum. There are no published Raman data, and the only infrared results are from a survey spectrum obtained at the time of the original synthesis. ${ }^{3}$ Only three bands were observed--just the number of fundamentals permitted by cubic symmetry. Recently some unpublished data of King, Cole, and Gayles has been quoted by others. ${ }^{5}$ Both the data and the interpretation differ considerably from ours. Thus there is very little usable information on the vibrational spectrum of cubane in the literature.

This work is a cooperative project between our two laboratories. Della and Patney did the chemical preparations, Jones and Miller made the spectroscopic measurements, and McCoy is responsible for the normal coordinate calculation (to be published separately). We have studied five isotopic forms of cubane: cubane- d_{0} and - d_{8} (O_{h} symmetry), sym-cubane- d_{2} and - $d_{6}\left(D_{3 d}\right)$, and cubane- $d_{1}\left(C_{3 c}\right)$. For brevity these will be referred to as $d_{0}, d_{1}, d_{2}, d_{6}$, and d_{8}. The d_{2} and d_{6} will always mean sym- d_{2} and sym- d_{6}. Their full names are 1,4 -dideuteriocubane and 1,2,3,4,6,7-hexadeuteriocubane.

Experimental Procedures and Results

Origin and Properties of the Samples. The syntheses have been described by Della and Patney. ${ }^{6}$ Between 40 and 200 mg of each compound was available for our work.

Cubane is a colorless solid. It melts at $130-131^{\circ} \mathrm{C}$, and decomposes a bove the melting point. It is soluble in $\mathrm{CS}_{2}, \mathrm{CCl}_{4}, \mathrm{CHCl}_{3}$, and benzene. Surprisingly, it is not sufficiently soluble in cyclohexane to make that a useful solvent for vibrational spectroscopy. It sublimes fairly easily, and is readily transferred on a vacuum line. ${ }^{7}$ A small sample left in the open will disappear overnight. One can readily lose cubane while handling it, and we had great difficulty in recovering samples after our experiments. In part this was because the cubane also vaporized when a solvent was evaporated. We suspect, too, that the vapor dissolves readily in stopoock grease.

The purity of the samples will be discussed later.
Infrared Procedures. Initially quite a bit of d_{0} was lost in vain attempts to make KBr pressed disks. It just disappeared. We believe now that it may have sublimed when the sample- KBr mixture was evacuated prior to and during the pressing. Solid samples were therefore prepared by depositing the vapor onto a cold window ($\sim 100 \mathrm{~K}$) in a conventional low-temperature cell. Solutions in CS_{2} and CCl_{4} were also used.

Spectra were obtained from 400 to $3600 \mathrm{~cm}^{-1}$ with a Beckman IR-12 spectrophotometer. The lower limit was set by KBr cell windows. In addition a thick deposit of d_{0} was measured down to 200 cm^{-1} in a Csl cell. Since no infrared bands were found, the range $200-400 \mathrm{~cm}^{-1}$ was not examined for the other compounds. The spectral slit widths were $1-2 \mathrm{~cm}^{-1}$ in all cases.

Raman Procedures. Raman spectra were obtained with a Spex Ramalog instrument which has been described elsewhere. ${ }^{8}$ Samples were held in thin-walled glass capillary tubes. They were examined as polycrystalline solids at room temperature, and as solutions in CS_{2}, CCl_{4}, or benzene as needed to observe each band. Depolarization ratios were measured for the solutions. Excitation was with either the 488.0 - or $514.5-\mathrm{nm}$ line of an Ar^{+}laser. We took the precaution of keeping the laser power at the sample less than 100 mW , and of ro-

Table I (Continued)

infrared						Raman							assignments
solid ($\sim 100 \mathrm{~K}$)		CS_{2} soln		CCl_{4} soln		solid ($\sim 295 \mathrm{~K}$)		CS_{2} soln		$\mathrm{CCl}_{4} \mathrm{soln}$			
cm^{-1}	int	cm^{-1}	int	cm^{-1}	int	cm^{-1}	int ${ }^{\text {a }}$	cm^{-1}	int ${ }^{\text {a }}$	cm^{-1}	int ${ }^{\text {a }}$	ρ^{b}	
2978	vs	2977	vs	2982	vs								10 (e_{u})
2992	vs					2995	395	2994	295	2999	280	0.0	$\begin{aligned} & 3 \text { and } 10\left(a_{u}\right)^{d} \\ & \hline \end{aligned}$

${ }^{a}$ Raman intensities are relative peak intensities on a scale of $0-1000$, uncorrected for instrument response. ${ }^{b} \rho=$ depolarization ratio. For depolarized lines, we obtain $0.75 \pm 0.03 \mathrm{p}, \mathrm{dp}=$ polarized, depolarized. Numerical value of ρ could not be obtained. ${ }^{c} 821 \mathrm{~cm}^{-1}$ is a shoulder on the side of the CS_{2} band at $796 \mathrm{~cm}^{-1}$. ${ }^{d}$ See text. e Notes (also apply to Tables $11-\mathrm{V}$): $\mathrm{w}, \mathrm{m}, \mathrm{s}=$ weak, medium, strong; $\mathrm{v}=$ very; $\mathrm{b}=$ broad; $\mathrm{sh}=$ shoulder; $\sim=$ approximate ($\pm 3-5 \mathrm{~cm}^{-1}$), due to breadth, weakness, or being a shoulder; *, solvent interferes; $\mathrm{R}=$ Raman value; $1=$ infrared value; imp. = impurity; $d_{1}, d_{7}=$ cubane $-d_{1}$, cubane- d_{7}, etc.; ()$=$ estimated from product rule; $F R=$ Fermi resonance.

Table II. Cubane- $d_{8} \operatorname{Infrared}$ and Raman Bandse

Table II (Continued)

${ }^{a}$ See footnote a, Table $1 .{ }^{b}$ See footnote b, Table I. ${ }^{c}$ See text. ${ }^{d}$ Benzene solution. ${ }^{e}$ See footnote e, Table 1 .

Table III. sym-Cubane $d_{2} \operatorname{lnfrared}$ and Raman Bands f

Table III (Continued)

${ }^{a}$ Sce footnote a, Table $1 .{ }^{h}$ See footnote b, Table $1 .{ }^{c} 738 \mathrm{~cm}^{-1}$ is asymmetric on low- cm^{-1} side; unable to resolve. ${ }^{d} 820 \mathrm{~cm}^{-1}$. In CHCl_{3} solution. ${ }^{e}$ See footnote d, Table 1. ${ }^{\prime}$ See footnote e, Table 1.
tating the capillary, to avoid decomposition. It was not possible to obtain the spectrum of molten cubane because it decomposed when slightly above the melting point and under laser illumination. The spectral slit widths were $5 \mathrm{~cm}^{-1}$ for survey spectra, and down to $1 \mathrm{~cm}^{-1}$ when possible for frequency measurements.

Results. Survey spectra are shown in Figures 2-5 and numerical data are given in Tables 1-V. The wavenumber calibration of the instruments was checked just before or after each measurement. The tabulated infrared wavenumbers are thought to be accurate to ± 1 cm^{-1}, and the Raman ones to $\pm 2 \mathrm{~cm}^{-1}$, unless a band is marked broad, shoulder, or approximate.
It is noteworthy that the bands seldom change by more than $3 \mathrm{~cm}^{-1}$ between solid, CS_{2} solution, and CCl_{4} solution. This simplifies comparison between these spectra.

Theoretical Considerations

We find that in solution cubane- d_{0} follows the selection rules for O_{h} symmetry, whereas in the polycrystalline solid it follows
those for the crystal.
Solutions. Consider first the expectations for the free molecule (gas or solution). If cubane- d_{0} and $-d_{8}$ are cubic (O_{h} symmetry), their vibrations are $2 \mathrm{a}_{1 \mathrm{~g}}(\mathrm{R})+2 \mathrm{e}_{\mathrm{g}}(\mathrm{R})+1 \mathrm{f}_{1 \mathrm{~g}}+$ $4 f_{2 g}(R)+2 a_{2 u}+2 e_{u}+3 f_{1 u}(I)+2 f_{2 u}$, where R and I mean Raman and infrared active. Note that only three of the nine u modes are active. sym-Cubane- d_{2} and $-d_{6}$ then have symmetry $D_{3 d}$, and their fundamentals are $6 \mathrm{a}_{1 \mathrm{~g}}(\mathrm{R})+1 \mathrm{a}_{2 \mathrm{~g}}+$ $7 \mathrm{e}_{g}(\mathrm{R})+2 \mathrm{a}_{1 \mathrm{u}}+5 \mathrm{a}_{2 \mathrm{u}}(\mathrm{I})+7 \mathrm{e}_{\mathrm{u}}(\mathrm{I})$. Finally cubane- d_{1} is $\tilde{C}_{3 v}$, with $11 a_{1}(R, I)+3 a_{2}+14 e(R, I)$.

Table VIA gives the correlation of the vibrations as the symmetry changes from O_{h} to $D_{3 d}$ to $C_{3 v}$

Product Rule. The Teller-Redlich product rule ${ }^{9}$ is a powerful and useful check on the assignments. We prefer to use the reciprocal of the equation given by Herzberg so that the ratios are >1. Data used for calculating the theoretical ratios are given in Table VII. Both theoretical and observed product rule

Table IV. sym-Cubane- $d_{6} \operatorname{Infrared}$ and Raman Bands g

infrared				Raman					assignment
solid ($\sim 100 \mathrm{~K}$)		CS_{2} soln		solid ($\sim 295 \mathrm{~K}$)		CCl_{4} soln		β^{7}	
cm^{-1}	int	cm	int	cm^{-1}	int $^{\text {a }}$	Cl11-1	int ${ }^{\prime}$		
538	vw								8
				579	6	578	3	0.0	16 a
				598	35	597	15	0.78	16 b
~ 623	vvw, b								?
633	vvw								?
~ 643	w, sh								?
6.1	m	645	m						18 b
662	w	661	vw						?
				671	4	671	1		?
674	vw								18 a
690	s	688	m						12a
				704	305	696	110	0.78	6
717	w			716	10	- ${ }^{\prime}$			6 for d_{5} ?
				725	35	725°	10	0.48	15a
736	vw			738	35	$736{ }^{\text {c }}$	10	0.80	d_{5} ?
~ 757	vw, b			758	245	753	70	0.78	15b
				786	6	- ${ }^{\prime}$		'?	
$\left\{\begin{array}{l} 786 \\ 792 \end{array}\right.$	s	786	m						12 b
	s								
				806	1	* d			?
807	m	804	m						4
832	vvw								?
849	vw			847	35	844	8	0.76	$d s^{\prime}$?
				884	1				9 a
927	vw								17 a
				961	55	962	40	0.0	2 for ${ }^{13} \mathrm{C}$ compd
				967	1000	966	1000	0.01	2 边
				971	250	971	160	0.01	2 for d_{s} ?
975	vvw								17 b
				978	15	978	7	0.0	2 for d_{4} ?
				985	90	985	15	0.75	9 b
				992	15				9 b for d_{5} ?
1014	w								
				1029	15				?
				1035	155	1036	45	0.80	5
				1067	5	1065	3	0.0	$2 \times 538(1)=1076$
				1083	25	1083	10	0.65	14 a
1100	vw								11 a
~ 1144	vw, b			1145	100	1146	30	0.77	14 b
1164	s	1164	m						$11 \mathrm{~b}$
1169	vw, sh								imp.e
$\left\{\begin{array}{l}1184 \\ 1187\end{array}\right.$	m	1183	w	1183	1				11 b for d_{5} ?
$\{1187$	m								liblar
~ 1384	vw, b								$598(\mathrm{R})+786(1)=1384$
~ 1536	vow, b								$758(\mathrm{R})+786(1)=1544$
~ 1554	vow, b								$579(\mathrm{R})+975(1)=1554$
~ 1615	vow, b								$967(\mathrm{R})+651(1)=1618$
~ 1642	$v w, b$								$?$
~ 1680	$v w, b$								$1145(\mathrm{R})+538(1)=1683$
~ 1728	vvw, b								$1083(\mathrm{R})+651(1)=1734$
~ 1769	vw, b								$758(\mathrm{R})+1014(\mathrm{l})=1772$
				1917	1	~ 1917	$1, b$		$884(\mathrm{R})+1035(\mathrm{R})=1919$
				1947	1	~ 1947	$\mathrm{l}, \mathrm{~b}$		$786(1)+1164(1)=1950$
1955	vw								$985(\mathrm{R})+975(1)=1960$
				1987	3	~ 1987	$1, \mathrm{~b}$		$975(1)+1014(1)=1989$
2006	w								$1035(\mathrm{R})+975(1)=2010$
				2019	1	~ 2020	1.b		$985(\mathrm{R})+1035(\mathrm{R})=2020$
2032	vvw								?
2043	w								$884(\mathrm{R})+1164(1)=2048$
2053	vvw								$1083(\mathrm{R})+975(1)=2058$
				2061	6	2062	4	0.59	$2 \times 1035(\mathrm{R})=2070$
2078	w								$985(\mathrm{R})+1100(1)=2085$
2114	vvw								$\begin{aligned} & 1145(\mathrm{R})+975(1)=2120 \\ & (2 \times 1067(\mathrm{R})=2134 ? \end{aligned}$
				2134	3	2135	2	0.0	$\left\{\begin{array}{l} 985(\mathrm{R})+1145(\mathrm{R})=2130^{\prime} \\ 975(1)+1164(1)=2139^{\prime} \text { ? } \end{array}\right.$
2142	vw								$985(\mathrm{R})+1164(1)=2149$
				2162	5	2163	4	0.0	$2 \times 1083(\mathrm{R})=2166$
2172	vw								?

Table IV (Continued)

infrared				Raman					assignment
solid ($\sim 100 \mathrm{~K}$)		CS_{2} soln		solid ($\sim 295 \mathrm{~K}$)		CCl_{4} soln			
cm^{-1}	int	cm^{-1}	int	cm^{-1}	int ${ }^{\text {a }}$	cm^{-1}	int ${ }^{\text {a }}$	$\rho^{\bar{b}}$	
				2176	5				$\left\{\begin{array}{l} 1014(1)+1164(1)=2178 \\ 1035(R)+1145(R)=2180 \end{array}\right.$
$\{2194$	w								
2196	w								$1035(\mathrm{R})+1164(1)=2199$
				2196	5	2196	4	0.0	$2 \times 1100(1)=2200$
$\{2216$	vw								?
2220	vw								?
				$\left\{\begin{array}{l} 2229 \\ 2234 \end{array}\right.$	$\begin{array}{r} 320 \\ 90 \end{array}$	2230	100	0.75	13 b
$\{2231$	s								
$\{2236$	vs	2234	vs						10 b
$\{2239$	vs								
\{2242	vs	2245	s						3
				2254	495	2257	335	0.02	1
				2275	6				?
				2319	1				$2 \times 1164(1)=2328$
2974	vs	2972	s						10a
				2978	330	2979	110	0.19	13a
2991	s								$758(\mathrm{R})+2236(1)=2994$
				2992	80	f			$758(\mathrm{R})+2229(\mathrm{R})=2987$. FR with 2978
3226	vw								$2229(\mathrm{R})+1100(1)=3229$
~ 3378	vvw, b								$1145(\mathrm{R})+2236(1)=3381$

"Sce footnote a, Table $1 .{ }^{h}$ See footnote b, Table $1 .{ }^{c}$ In benzene solution. ${ }^{d} 806 \mathrm{~cm}^{-1}$. Both CCl_{4} and benzene interfere. ${ }^{*}$ See footnote d, Table 1.f $2992 \mathrm{~cm}^{-1}$ is not observed in solution, even at $0.5-\mathrm{cm}^{-1}$ resolution. ${ }^{g}$ See foot note e, Table 1 .
ratios (τ 's) are listed in Table VIII. The observed ratios are expected to be less than the theoretical ones because of anharmonicity. A crude guide is that the difference is about 1% for each $\mathrm{C}-\mathrm{H}(\mathrm{D})$ stretching mode and about 0.5% for each $\mathrm{C}-\mathrm{H}(\mathrm{D})$ bending mode.

Effect of Crystal Structure. Fleischer showed that the space group is $R \overline{3}$ (or $C_{3 i}{ }^{2}$), with only one molecule per unit cell. ${ }^{4}$ The factor group is $C_{3 i} \equiv S_{6}$. This has several useful consequences. (a) Under it, $a l l$ the fundamental modes of d_{0} and d_{8} become formally allowed. The correlation between modes of the free molecule and of the factor group is shown in Table VIB. (b) There is still a center of symmetry in the factor group so the $\mathrm{g}-\mathrm{u}$ distinction is preserved and the rule of mutual exclusion still applies. (c) In principle the triply degenerate modes of O_{h} split into two spectroscopically active components in the crystal. In fact most of them are observed to do just that.

The finding that there is only one molecule per unit cell also has three pertinent consequences. (1) There are no correlation field splittings due to interactions between molecules in the same unit cell. Therefore any observed splittings are due to lowering of the symmetry from the molecular group to the factor group (O_{h} to S_{6}). Consequently they will be a dependable guide to locating triply degenerate modes of O_{h}. (2) There are no translatory lattice modes. (3) There are only two rotatory lattice modes, having symmetry a_{g} and e_{g} of S_{6}. These are Raman allowed, but we found no evidence for them down to $30 \mathrm{~cm}^{-1}$. This is understandable, for they are probably very low in both frequency and intensity. If the molecule were truly cubic in the crystal, rotation or libration would not change the polarizability, and it would be spectroscopically inactive. The molecule is not exactly cubic but the distortion is very small so the librational bands are probably very weak.

The above considerations do not necessarily apply to the intermediate deuterated species. The d_{1}, d_{2}, and d_{6} molecules have a unique molecular symmetry axis, but it is not necessarily directed along the S_{6} axis of the unit cell. The C_{3} symmetry axis of these molecules does not present a very different external aspect to neighboring molecules than the other cube diagonals, so some randomness is possible. This will lead to a further relaxation of selection rules in the solid.

Figure 1. The carbon skeleton of cubane.

Purity of the Samples

A discussion of the purity has been deferred until after presenting the selection rules for solution and solid. We now must consider it before starting on the assignments.

First of all, the infrared spectrum of every solid sample has a very weak band at 1168 or $1169 \mathrm{~cm}^{-1}$. It is not in the empty cell. Although it is hard to imagine how the same impurity can be in every one of the isotopic compounds, we believe that this band must be due to something extraneous to the samples.
d_{0}. Gas chromatography indicated $1-2 \%$ of a chemical impurity whose identity is unknown. A few bands in Table I that we cannot explain may be due to it. The only band that we are certain is an impurity is $1030 \mathrm{~cm}^{-1}$ in the infrared, because it appears in solution as well as the solid. Only $f_{l u}$ modes are allowed in solution (i.e., for the free molecule), and all three $\mathrm{f}_{\text {lu }}$ fundamentals are known with certainty. It cannot be a sum tone because no frequencies are low enough, and it cannot be a difference tone because the solid spectrum was obtained at 100 K . Hence the infrared band is due to an impurity. The Raman band at $\sim 1026 \mathrm{~cm}^{-1}$ may have the same origin.

The remaining samples contained the same $1-2 \%$ of chemical impurity found in d_{0}, although it may have been partially deuterated. The isotopic purity seems much more significant, and will now be discussed.

Table V. Cubane- \boldsymbol{d}_{1} Infrared and Raman Bands ${ }^{\prime \prime}$

infrared				Raman					assignment
solid ($\sim 100 \mathrm{~K}$)		CS_{2} soln		solid ($\sim 295 \mathrm{~K}$)		CCl_{4} soln		$\rho^{\prime \prime}$	
cm^{-1}	int	cm^{-1}	int	$=\mathrm{m}^{-1}$	int ${ }^{\text {a }}$	cm^{-1}	int ${ }^{\text {a }}$		
590	w	585	w	587	11	585	4	0.82	8
654	w	*		652	7	652	4	0.75	16b
				~ 659	sh	~ 659	sh		16a
724	m	721	m	722	55	722	20	0.76	18b
				816	25	$818{ }^{\circ}$	10	0.71	15a
828	w			826	25				15 b
834	w								18a
847	vs	844	vs	844	7	843	4	0.56	$4,12 \mathrm{~b}^{\text {d }}$
853	s, sh								12a
~ 878	w								?
892	m	885	m	898	780	887	200	0.73	6
				~ 902	sh				?
995	vw			996	1000	995	1000	0.00	2
				1002	100	1002	40	0.26	2 of d_{0}, plus 176 ${ }^{\text {d }}$
1002	w	1001	w						17 b
1026	vw			1027	28	1028	5	0.01	?
1036	w								17a
1062	w			1062	18	1062	7	0.76	5
1098	vw			1101	13	1100	3	0.75	9 b
				1132	5				9 a
1145	w			1145	4				
1168	vw								imp. ${ }^{\text {d }}$
1175	w	1175	w	1174	70	1176	40)	0.76	14a
~ 1179	vw, sh			1179	50	1179	sh)	0.76	14 b
1184	vw								?
1219	vs	1217	s	1217	7	1219	4	0.73	11 a
1225	vs	1223	s						116
1248	vw								$590+659=1249$
1308	w	1303	w						$590+724=1314$
1381	vw	*							$659+724=1383$
~ 1659	w, b	*							$659+1002=1661$
									$1590+1098=1688$
~ 1690	w. b								$\left\{\begin{array}{l}654+1036=1690 \\ 847+844=1691\end{array}\right.$
~ 1722	w, b								$724+1002=1726$
~ 1762	w. b								$\left\{\begin{array}{c}590+1174=1764\end{array}\right.$
									$\{724+1036=1760$
~ 1806	w, b								$590+1219=1809$
~ 1880	vw, b								$\left\{\begin{array}{l} 892+996=1888 \\ 659+1225=1884 \end{array}\right.$
~ 1945	vw, b								$724+1225=1949$
~ 1962	w, b	~ 1959	w, b						$816+1145=1961$
1984	vw			1982	2	1984	1		$2 \times 996=1992$
~ 2025	vw, b								$847+1179=2026$
~ 2056	vw. b			2054	2	2056	3		$996+1062=2058$
~ 2108	vw, b	*							$892+1219=2111$
				2114	1				$898+1217=2115$
				2143	1	2145	1		$996+1145=2141$
2170	w	*		2168	2				$996+1174=2170$
2199	w	*							$2 \times 1101=2202$
2204	w	*							$1062+1145=2207$
2212	m	*		2212	15	2214	10	0.22	$996+1217=2213$
~ 2230	w, sh					~ 2233	sh		$1101+1132=2233$
2239	m	2241	m	2240	85	2243	36	0.19	10a
2250	w			~ 2247	sh				$1101+1145=2246$
				2269	2	2270	1		$1101+1174=2275$
				2349	2	2352	1		$2 \times 1174=2348$
2967	S			2969	4203				
2978	vs	2975	vs	2977	280	2973	150	dp?	$\begin{aligned} & 13 \mathrm{a}, 13 \mathrm{~b} \\ & 3,10 \mathrm{~b} \end{aligned}$
2992	s			2993	590	2995	260	p	1

${ }^{*}$ See footnote a, Table $1 .{ }^{h}$ See footnote b, Table 1. ${ }^{\prime}$ (818). In CHCl_{3} solution. ${ }^{d}$ See footnote d. Table I. ${ }^{c}$ See footnote e, Table 1.
d_{8}. NMR showed that the deuterium content is $96 \pm 1 \%$ of the total $[D+H]$. If the figure is 96%, and if the distribution is statistical, then there is $72 \% d_{8}, 24 \% d_{7}$, and $4 \% d_{6}$ (not all of which is $s y m-d_{6}$). The spectrum of d_{8} does show a considerable amount of isotopic impurity. This not only gives many extraneous bands; it also dilutes the d_{8} and makes many of its
bands appear to be very weak.
Evidence for isotopic impurity in d_{8} consists of the following: (a) Bands which appear in both the infrared and Raman spectra (agreeing within $3 \mathrm{~cm}^{-1}$) (not permitted for O_{h} or S_{6} symmetry except by accident). Examples are 638, 711, 768, $924,960,1005,1156,2052,2975$, and $2993 \mathrm{~cm}^{-1}$. We do not

Figure 2. Spectra of cubane. (There is a $2 \times$ scale change at $2000 \mathrm{~cm}^{-1}$.) Upper, infrared of solid at $\sim 100 \mathrm{~K}\left(1-2 \mathrm{~cm}^{-1}\right.$ slits): (A) absorption by water on cell windows; (B) absorption by KBr windows; (E) discontinuity due to grating change. Lower, Raman of solid at room temperature, 4880-À excitation, $5-\mathrm{cm}^{-1}$ slits; (C) Hg line from room lighting; (D) bands due to glass of sample tube.
attribute $686(\mathrm{I})$ and $684(\mathrm{R})$ to d_{7} because each is very intense. The infrared band is assigned to an allowed $f_{l u}$ fundamental. Also the IR and Raman values in CCl_{4} solution differ by 15 cm^{-1}. (b) Weak bands which appear a few cm^{-1} higher than stronger bands of d_{8}. The former may be due to d_{7}. Examples are 532,674 , and $1032 \mathrm{~cm}^{-1}$. (c) Some infrared bands which appear in both solid and solution. Assuming that the effective symmetry in solution is O_{h}, only modes of f_{lu} symmetry are permitted. The three $f_{1 u}$ modes are easily identified (see later). Other infrared bands in solution which cannot be explained as F_{14} combination tones are probably due to d_{7}. Examples are $711,768,791,1156$, and $1185 \mathrm{~cm}^{-1}$.

Two of the above frequencies will actually be assigned to d_{8} fundamentals later in spite of the suspicion that they are due to d_{7} (924 and $960 \mathrm{~cm}^{-1}$).

The Raman bands of d_{8} in solution at 570 and $606 \mathrm{~cm}^{-1}$ are attributed to an impurity because they are highly polarized. For d_{8} there are only two polarized fundamentals, and they are certainly 956 and $2259 \mathrm{~cm}^{-1}$. There is no way that totally symmetric combination tones can be obtained at 570 and 606 cm^{-1}. These bands must therefore arise from some extraneous substance. Furthermore, a Raman band was observed at 570 cm^{-1} in the CCl_{4} solution of every sample of every cubane that we have examined in this work. (This was not true for the solids, however.) For d_{8}, the intensity of the $570-\mathrm{cm}^{-1}$ band in
solution increased with time, further suggesting that it was due to a chemical impurity.

Finally, the $448-\mathrm{cm}^{-1}$ infrared band of d_{8} is attributed to an impurity because there is no reasonable corresponding band in any of the other cubanes. Its counterpart in d_{0} must not be greater than 448×1.35 (the maximum isotopic shift ratio) $=$ 605. The only bands between 448 and $605 \mathrm{~cm}^{-1}$ in all the other cubanes can be nicely accounted for in other ways.
\boldsymbol{d}_{1}. NMR indicated the isotopic labeling to be $99 \pm 1 \%$ complete. ${ }^{6}$ The Raman band at $1002 \mathrm{~cm}^{-1}$ could be due to d_{0}, but if so it seems to also coincide with another mode. This will be discussed later under "Assignments for d_{1} ". There are no other places in the spectrum where one can get a sensitive test for d_{0} impurity in d_{1}.
\boldsymbol{d}_{2}. NMR indicated the deuterium content at the labeled positions to be $99 \pm 1 \% .{ }^{6}$ The spectrum of d_{1} provides a useful check on the purity of d_{2}. For example, the very strong Raman-active band of each compound near $1000 \mathrm{~cm}^{-1}$, due to the "cube breathing" mode, gives evidence in d_{2} for some $d_{1}\left(994 \mathrm{~cm}^{-1}\right)$ and a little $d_{0}\left(1001 \mathrm{~cm}^{-1}\right)$. Infrared-Raman coincidences should not occur in d_{2} except by chance, but several are observed (agreement within $3 \mathrm{~cm}^{-1}$). Two of these are attributed to d_{1} impurity: 724 and $890 \mathrm{~cm}^{-1}$. These bands are at least moderately strong in d_{1}, and for it the coincidence is allowed.

Figure 3. Spectra of $s y m$-cubane- d_{2}. See Figure 2 for full caption.

Table VI. Correlation of the Vibrations"

\boldsymbol{d}_{6}. NMR showed the deuterium content at the labeled positions to be $96 \pm 2 \% .{ }^{6}$ The spectra show considerable evidence for isotopic impurity, viz.: (a) Several strong bands assigned as fundamentals for d_{6} have weaker satellite bands a few

Table VII. Data for Calculating Product Rule Ratios"

compd	M	I_{z}	I_{4}
cubane- d_{0}	104.15	146.6	146.6
sym$_{0}$ cubane d_{2}	106.17	146.6	158.4
${\text { sym-cubane }-d_{6}}^{\text {cubanc- } d_{8}}$	110.19	177.6	166.1

" $M=$ molecular weight; $I=$ moment of inertia (in annu A^{2}). $r(\mathrm{C}-\mathrm{C})=1.551 \AA ; r(\mathrm{C}-\mathrm{H})$ and $r(\mathrm{C}-\mathrm{D})=1.06 \AA$.
wavenumbers higher which are assigned to d_{5}. The best example is the very strong Raman cube breathing mode at 967 cm^{-1}, which has highly polarized satellite bands at 971 and $978 \mathrm{~cm}^{-1}$ that are attributed to d_{5} and d_{4}, respectively. Other examples are 716 and $992 \mathrm{~cm}^{-1}$. (b) Several bands which are observed in both the infrared and Raman spectra are attributed to $d_{5}\left(716,847,1184 \mathrm{~cm}^{-1}\right)$.

Assignments for the g Modes of $\boldsymbol{d}_{\mathbf{0}}$ and $\boldsymbol{d}_{\mathbf{8}}$

Now having removed at least some of the extraneous features from the data, we are ready to start on the assignments. The g modes for d_{0}, d_{2}, d_{6}, and d_{8} will be considered first, followed by their u modes. Since d_{1} does not have a center of symmetry, it will be postponed until last.

The assignments are included in Tables I-V, and are summarized in Table IX. in the discussion the frequencies quoted will usually be those for the solid because many frequencies do not appear in solution, especially in the infrared spectra.

Table VIII. Theoretical vs. Observed Product Rule Ratios (τ 's) for the Cubanes

isotopic pair		O_{h} Species							f_{14}	f_{24}
		$\mathrm{a}_{1 \mathrm{~g}}$	c_{g}	$\mathrm{f}_{1 \mathrm{E}}$	$\mathrm{f}_{2 \mathrm{~g}}$	a_{24}	e_{u}			
$d_{1 /} / d_{8}$	theor	1.414	1.414	1.285	2.000	1.414	1.414		1.927	1.414
	obsd	1.390	1.406	1.278	1.912	1.383	1.404		1.877	1.379
$D_{3 d}$ Species										
		$\mathrm{a}_{1 \mathrm{~g}}$		a_{28}	$\mathrm{c}_{\underline{g}}$	a_{14}		$a_{2 u}$		e_{u}
d_{0} / d_{2}	theor obsd	1.414		1.000	1.361	1.000		1.401		1.401
		1.389		1.000	1.345	1.002		1.371		1.378
d_{0} / d_{0}	theor obsd	2.000		1.285	2.658	1.414		1.944		2.750
		1.949		1.278	2.577	1.375		1.912		2.690
d_{2} / d_{6}	theor	1.414		1.285	1.953	1.414		1.388		1.963
	obsd	1.404		1.278	1.915	1.371		1.394		1.952
d_{2} / d_{8}	theor obsd	2.000		1.285	2.671	1.414		1.945		2.751
		1.913		1.278	2.555	1.376		1.894		2.637
d_{6} / d_{*}	theor obsd		1.414	1.000	1.367	1.000		1.401		1.401
			1.363	1.000	1.334	1.003		1.359		1.351

Figure 4. Spectra of $s y m$-cubane- d_{6}. See Figure 2 for full caption.

For O_{h} symmetry the g fundamentals are $2 \mathrm{a}_{1 \mathrm{~g}}(\mathrm{R}, \mathrm{p})+$ $2 \mathrm{e}_{\mathrm{g}}(\mathrm{R})+1 \mathrm{f}_{1 \mathrm{~g}}+4 \mathrm{f}_{2 \mathrm{~g}}(\mathrm{R})$.
A. g Modes for \boldsymbol{d}_{0}. It is simplest to start with d_{0} because one does not have to worry a bout incomplete deuteration for it. It does have $1-2 \%$ of an unknown chemical impurity which may be responsible for a few weak bands that we cannot explain any other way. We reiterate that the solution follows O_{h} selection rules, and the solid follows S_{6}. By examining Table VIB one sees that the g modes for d_{0} and d_{8} can, in principle, be sorted
out in the following way: $\mathrm{a}_{1 \mathrm{~g}}$ bands are polarized in solution; $f_{1 g}$ bands are forbidden in solution but allowed in the crystal; $f_{2 g}$ bands are allowed in both, and give doublets in the crystal; e_{g} bands are allowed in both, but give singlets in the crystal.

1. $\mathbf{a}_{1 \mathrm{~g}}$. Depolarization ratios and intensities clearly indicate that these two fundamentals are at 2995 and $1002 \mathrm{~cm}^{-1}$. Note that because the molecule is cubic, ρ should be zero, and that it is so within experimental error.
2. $\mathbf{f}_{1 \mathbf{g}}$. There is only one mode in this species, a C-H bend.

Figure 5. Spectra of cubane-d8. See Figure 2 for full caption.

It is forbidden in solution but allowed in the crystal. There is only one candidate: the weak band at $1130 \mathrm{~cm}^{-1}$. Although it should be a doublet in the crystal, it is not. The assignment will be verified by d_{6} and d_{8} results to be given later.
3. $\mathbf{f}_{\mathbf{2 g}}$. These four fundamentals should occur in both solution and solid, and be doublets in the latter. The doublet property suggests 2970,1182 , and $821 \mathrm{~cm}^{-1}$ (all solution values). The fourth one is not obvious and we defer it for a bit.
4. e_{g}. These two modes are allowed in both solution and solid, but are singlets in the latter. The extremely intense $912-\mathrm{cm}^{-1}$ band is a clear choice, but the second one is not obvious.

There are only five candidates for the two missing g fundamentals: 665 , possibly 827 (the separation between 815 and 827 is larger than for any other doublet in d_{0} or $\left.d_{8}\right), \sim 1026$, 1083 , and $\sim 1223 \mathrm{~cm}^{-1}$. We will turn to the deuterium derivatives for help in making the selection.
B. g modes for $\boldsymbol{d}_{8} .1 . \mathrm{a}_{1 \mathrm{~g}}$. Polarization and intensity clearly indicate that these two fundamentals are at 2259 and 956 cm^{-1}. The product rule ratio is satisfactory (Table VIII).

Vibration ν_{2}, the cube breathing mode, can easily be located in all the intermediate deuterated compounds except d_{3}, because it decreases linearly by $5.75 \mathrm{~cm}^{-1}$ per D atom (Table XA). Adding one atomic mass unit by substituting a ${ }^{13} \mathrm{C}$ for a ${ }^{12} \mathrm{C}$ atom has exactly the same effect as substituting a D for a H atom, viz., ν_{2} is lowered by about $6 \mathrm{~cm}^{-1}$. Thus in $d_{0} \nu_{2}$ is lowered from 1002 to $996 \mathrm{~cm}^{-1}$ in the ${ }^{13} \mathrm{C}$ compound, and in d_{8} from 956 to $950 \mathrm{~cm}^{-1}$. The concentration of molecules
containing one ${ }^{13} \mathrm{C}$ atom is 8.2% of the total, so the intensities are reasonable.
2. \mathbf{f}_{1}. This one mode is expected in the solid only. Since the mode is at $1130 \mathrm{~cm}^{-1}$ in d_{0}, the product rule unequivocally selects $884 \mathrm{~cm}^{-1}$ in d_{0}. This choice will be verified later by the data for d_{6}.
3. $\mathrm{f}_{2 \mathrm{~g}}$. These modes should give doublets in the crystal. Possibilities are 715 (the 710 component is also in the infrared, but the two Raman bands are quite intense for d_{7} impurity), 1027 , and $2232 \mathrm{~cm}^{-1}$. Again one is missing. It will turn out, too, that we shall later be forced to assign $1027 \mathrm{~cm}^{-1}$ to e_{g} in spite of its being a doublet. Therefore two more $f_{2 g}$ fundamentals are needed.
4. eg. These modes are permitted in both solution and crystal, and are singlets in the crystal. The very strong $684-\mathrm{cm}^{-1}$ band is an obvious choice. It seems to be the counterpart of $912 \mathrm{~cm}^{-1}$ in d_{0} on the basis of (a) high intensity, (b) the unusually large frequency shift between crystal and solution ($13 \mathrm{~cm}^{-1}$ for d_{0} and $15 \mathrm{~cm}^{-1}$ for d_{8}). This mode can easily be traced through the intermediate compounds (Table XB). We are therefore confident that $912 \mathrm{~cm}^{-1}$ in d_{0} should be paired with $684 \mathrm{~cm}^{-1}$ in d_{8}. The large decrease shows that they belong to a $\mathrm{C}-\mathrm{H}$ bend.

This leaves an e_{g} and one or two $f_{2 g}$ fundamentals to be identified in both d_{0} and d_{8}. It is helpful now to look at the data for d_{1}, d_{2}, and d_{6}.
C. Help from the Raman Bands of d_{1}, d_{2}, and d_{6}. The

Table IX. Assignments for the Fundamental Vibrations of Cubane- $d_{0},-d_{2},-d_{6}$, and $-d_{8}{ }^{h}$

$\begin{gathered} D_{3 d} \\ \text { species } \\ \hline \end{gathered}$	$\begin{gathered} O_{h} \\ \text { species } \end{gathered}$		no.	schematic descripn	d_{0}	sym-d ${ }_{2}$	sym-d ${ }_{6}$	d_{8}
$\mathrm{R}(\mathrm{p})$	$\mathrm{a}_{1 \mathrm{~g}}$	R (p)	1	C-H str	2995	2993	2254	2259
			2	$\mathrm{C}-\mathrm{C}$ str	1002	991	967	956
	$\mathrm{f}_{2 \mathrm{~g}}$	R	13a	C-H str	2970	2237	2978	2232
			14a	$\mathrm{C}-\mathrm{H}$ bend \}	1182	1168	1083	1072
			15a	C-C str $\}$	821	821	725	715
			16a	$\mathrm{C} \mathrm{C}_{3}$ def	665	651	579	586
$\mathrm{a}_{2 \mathrm{~g}}$	$\mathrm{f}_{1 \mathrm{~g}}$		9 a	$\mathrm{C}-\mathrm{H}$ bend	1130	(1130)	884	884
	e_{g}	R	5	$\mathrm{C}-\mathrm{C}$ str	1083	1016	$1035^{\text {a }}$	1027
			6	C-H bend	912	875	$704{ }^{\text {a }}$	684
	$\begin{aligned} & f_{1 g} \\ & f_{2 g} \end{aligned}$	R	9 b	$\mathrm{C}-\mathrm{H}$ bend	1130	1100	$985{ }^{\text {a }}$	884
			13b	$\mathrm{C}-\mathrm{H} \operatorname{str}$	2970	2970	2229	2232
			14b	$\mathrm{C}-\mathrm{H}$ bend	1182	1174	1145	1072
			15b	C-Cstr $\}$	821	738	$758{ }^{\text {a }}$	715
			16b	$\mathrm{C}^{\text {C }}$ def	665	632	598	586
a_{14}	$\mathrm{f}_{2 u}$		17a	C-Cstr	1036	1036	927	924
			18a	$\mathrm{C}-\mathrm{H}$ bend $\}$	829	~ 827	674	(674)
$\mathrm{a}_{24} \quad 1$	$\mathrm{a}_{2}{ }^{\text {u }}$		3	C-H str	[~2978]	2968	2242	[$\sim 2239]$
			4	CC_{3} def	839	838	807	807
	f_{14}	1	10a	C-H str	2978	2240	2974	2240
			11a	C-C str	1230	1201	1100	1083
			12a	$\mathrm{C}-\mathrm{H}$ bend	853	851	690	686
$\mathrm{c}_{\mathrm{u}} \quad 1$	e_{u}		7			1109	1014	960
			8	$\left.\mathrm{C}-\mathrm{C}_{3} \operatorname{def}\right\}$	617	574	538	527
	f_{14}	1	10b	$\mathrm{C}-\mathrm{H}$ str	2978	2977	2236	2240
			11 b	$\mathrm{C}-\mathrm{C}$ str	1230	1222	1164	1083
			12b	$\mathrm{C}-\mathrm{H}$ bend	853	844	786	686
	$\mathrm{f}_{2 u}$		17b	C-Cstr	1036	995	975	924
			18b	$\mathrm{C}-\mathrm{H}$ bend $\}$	829	711	651	(674)

${ }^{\wedge}$ To satisfy the noncrossing rule, 1035 and $985 \mathrm{~cm}^{-1}$ in d_{6} should be interchanged, and so should 704 and $758 \mathrm{~cm}^{-1}$. See text. ${ }^{b}$ Values in parentheses were estimated from the product rule; values in brackets were estimated from the resonance pair.

Table X. Some Details for Several Fundamentals

vibration no.	d_{0}	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}	d_{7}	d_{8}
A. ν_{2} (obsd)	1002	996	991		$978{ }^{\text {a }}$	$971{ }^{\text {a }}$	967	$960^{\text {b }}$	956
ν_{2} (estd)		996	991	985	979	973	968	962	
B. ν_{6}	912	898	875			$716^{\text {a }}$	704		684
$\begin{aligned} & \nu_{6}(\text { (solid) } \\ & \quad-\nu_{6}(\text { soln }) \end{aligned}$	13	11	9				8		15
C. ν_{16}	665	$\begin{array}{r} \sim 659 \mathrm{sh} \\ 652 \mathrm{dp} \\ \hline \end{array}$	$\begin{aligned} & 651 \mathrm{p} \\ & 632 \mathrm{dp} \end{aligned}$				$\begin{aligned} & 598 \mathrm{dp} \\ & 579 \mathrm{p} \end{aligned}$		586

" From isotopic impurity in the d_{6} sample. See Table IV. ${ }^{h}$ From isotopic impurity in the d_{8} sample. See Table II.
$665-\mathrm{cm}^{-1}$ band of d_{0} can be traced through the intermediate compounds to $586 \mathrm{~cm}^{-1}$ in d_{8} as shown in Table XC. In d_{1}, d_{2}, and d_{6} it gives two bands, and in d_{2} and d_{6} one of each pair is polarized. This is just what is expected if, and only if, $665 \mathrm{~cm}^{-1}$ is an $\mathrm{f}_{2 \mathrm{~g}}$ mode, for on going from O_{h} to $D_{3 d}$ symmetry an $\mathrm{f}_{2 \mathrm{~g}}$ mode splits into $\mathrm{a}_{1 \mathrm{~g}}(\mathrm{p})$ and $\mathrm{e}_{\mathrm{g}}(\mathrm{dp})$. An e_{g} mode does not give two components when the symmetry is lowered to $C_{3 c}\left(d_{1}\right)$ or $D_{3 d}\left(d_{2}\right.$ and $\left.d_{6}\right)$. Therefore we have good evidence that 665 $\left(d_{0}\right)$ and $586 \mathrm{~cm}^{-1}\left(d_{8}\right)$ are $\mathrm{f}_{2 \mathrm{~g}}$ modes, and since they are the lowest Raman bands they must be ν_{16}. This is nominally a cube deformation, and the numerical value seems reasonable.
D. Completing $f_{2 g}$ and e_{g}. We now know all four $f_{2 g}$ fundamentals for d_{0} and three of them for d_{8}. The product rule indicates that the fourth in d_{8} is about $1050 \mathrm{~cm}^{-1}$. There is nothing there, but this is roughly midway between the strong depolarized Raman lines at 1072 (singlet) and $1027 \mathrm{~cm}^{-1}$ (doublet). One would like to use $1027 \mathrm{~cm}^{-1}$ because it is a doublet in the crystal, but it gives a product rule ratio of 1.996 , which is too high compared to the theoretical 2.000 . We therefore adopt $1072 \mathrm{~cm}^{-1}$ (which gives a ratio of 1.912 , too
low), and assign $1027 \mathrm{~cm}^{-1}$ to $\nu_{5}\left(\mathrm{e}_{\mathrm{g}}\right)$ of d_{8}. However, an e_{g} mode should not give a doublet, so we suggest that the 1032 -cm^{-1} component, which is much weaker, is due to d_{7}.

An alternative possibility is that 1027 and $1072 \mathrm{~cm}^{-1}$ in d_{8} may be a Fermi resonance pair. Their average is $1050 \mathrm{~cm}^{-1}$. There is a very weak infrared band at $527 \mathrm{~cm}^{-1}$ which will later be assigned to an e_{u} fundamental. It is possible that 2×527 $=1054 \mathrm{~cm}^{-1}\left(\mathrm{~A}_{1 \mathrm{~g}}+\mathrm{E}_{\mathrm{g}}\right)$ could interact with the missing e_{g} fundamental at about $1050 \mathrm{~cm}^{-1}$ to give the two observed bands. However, it is an $f_{2 g}$ fundamental which the product rule suggests is about $1050 \mathrm{~cm}^{-1}$, and it would not interact with this overtone. Consequently we reject this possibility.

Turning now to the eg modes, we have assigned $912 \mathrm{~cm}^{-1}$ in d_{0} and 1027 and $684 \mathrm{~cm}^{-1}$ in d_{8}. The product rule suggests that the missing one in d_{0} is about $1070 \mathrm{~cm}^{-1}$. There is a weak band at $1083 \mathrm{~cm}^{-1}$ which we adopt.

If we had interchanged the assignments of 1072 and 1027 cm^{-1} (putting $1072 \mathrm{~cm}^{-1}$ in e_{g} and $1027 \mathrm{~cm}^{-1}$ in $\mathrm{f}_{2 \mathrm{~g}}$), we would have had two problems: (a) a high τ for $\mathrm{f}_{2 \mathrm{~g}}$ (1.996) and (b) finding a satisfactory frequency for ν_{5} of d_{0}. The product
rule indicates that it should be around $1120 \mathrm{~cm}^{-1}$. The closest Raman bands are $1130 \mathrm{~cm}^{-1}$, which is surely ν_{9}, and 1083 cm^{-1}. The latter gives a τ for e_{g} of 1.347 , which is too low compared to τ (theor) $=1.414$. More important is that there are no reasonable Raman frequencies for ν_{5} in d_{2} and d_{6} between $1083\left(d_{0}\right)$ and $1072 \mathrm{~cm}^{-1}\left(d_{8}\right)$. Hence we reject this alternative too.

This completes the g fundamentals for d_{0} and d_{8}. We now turn to those for d_{2} and d_{6}.

g Modes for $\boldsymbol{d}_{\mathbf{2}}$ and $\boldsymbol{d}_{\mathbf{6}}$

When giving wavenumbers for the four compounds d_{0}, d_{2}, d_{6}, and d_{8}, we will for brevity list them in that order without specifying the compounds explicitly. For example, ν_{2} is 1002 , 991,967 , and $956 \mathrm{~cm}^{-1}$. Vibrations $\nu_{2}, \nu_{6}, \nu_{16 \mathrm{a}}$, and $\nu_{16 \mathrm{~b}}$ have already been traced through the series (see Table X).
$\mathbf{a}_{1 \mathrm{~g}}$ for $\boldsymbol{D}_{\mathbf{3 d}}$. This species contains two $\mathrm{C}-\mathrm{H}$ stretches. One of them involves the stretching of the H's (or D's) on the C_{3} axis. Its frequency will therefore be high for d_{0}, low for d_{2}, high for d_{6}, and low for d_{8}. We arbitrarily designate this one as $\nu_{13 \mathrm{a}}$. The other $\mathrm{C}-\mathrm{H}$ stretch $\left(\nu_{1}\right)$ will then be high-high-low-low. The observed depolarizations make it easy to select these. ν_{1} is 2995-2993-2254-2259, and $\nu_{13 \mathrm{a}}$ is 2970-2237-2978-2232 cm^{-1}.

It is also easy to trace $\nu_{14 \mathrm{a}}$ and $\nu_{15 \mathrm{a}}$ through the series because they are polarized in d_{2} and d_{6}. Values for $\nu_{14 \mathrm{a}}$ are 1182-1168-1083-1072, and for $\nu_{15 \mathrm{a}}$ are 821-821-725-715 cm^{-1}. The d_{2} band at $821 \mathrm{~cm}^{-1}$ is actually depolarized, but this is permissible and the numerical value is appropriate.
$\mathbf{a}_{\mathbf{2 g}}$ for $\boldsymbol{D}_{\mathbf{3 d}}$. There is only one mode in this species $\left(\nu_{9 \mathrm{a}}\right)$. It is forbidden in solution, but is allowed in the crystal. Since it involves a $\mathrm{C}-\mathrm{H}$ bend in which H 's on the C_{3} axis do not participate, its frequency should be the same for d_{0} and d_{2}, and also for d_{6} and d_{8}. We have already assigned it to $1130 \mathrm{~cm}^{-1}$ in d_{0} and $884 \mathrm{~cm}^{-1}$ in d_{8}. In d_{2} there is a band at $1133 \mathrm{~cm}^{-1}$, but it is present in both solution and solid and it is polarized. It therefore cannot be due solely to $\nu_{9 \mathrm{a}}$. We do not know its origin. However, d_{1} has a band at $1132 \mathrm{~cm}^{-1}$ in the Raman spectrum of the solid which adds support to the assignment. In d_{6} there is a very weak band in the solid at $884 \mathrm{~cm}^{-1}$. This also is helpful confirmation of the assignment.
e_{g} modes for $\boldsymbol{D}_{3 \mathrm{~d}}$. Vibrations ν_{6} and $\nu_{16 \mathrm{~b}}$ have already been identified (Table X). The $\mathrm{C}-\mathrm{H}$ stretch $\nu_{13 \mathrm{~b}}$ is straightforward. It will be high-high-low-low, and the values 2970-2970-2229-2232 cm^{-1} seem reliable. For $\nu_{14 \mathrm{~b}}$ the choices $1182-$ 1174-1145-1072 cm^{-1} are fairly obvious.

There are three nominal $\mathrm{C}-\mathrm{H}$ bends in this species. One of them $\left(\nu_{6}\right)$ has been identified. One of the other two is a bend of the $\mathrm{C}-\mathrm{H}$'s that lie on the C_{3} axis, so in zero approximation it should go high-low-high-low. For $\nu_{15 b}$ we select the values 821-738-758-715 cm^{-1} for the following reasons. In d_{2} the only candidates are 821 and $738 \mathrm{~cm}^{-1}$. Since $821 \mathrm{~cm}^{-1}$ has already been used for $\nu_{15 \mathrm{a}}$, we try $738 \mathrm{~cm}^{-1}$ for $\nu_{15 \mathrm{~b}}$. In d_{6} there are six bands between 821 and $715 \mathrm{~cm}^{-1}$. The strongest by far is $758 \mathrm{~cm}^{-1}$, so we shall try it. The above sequence goes high-low-high-low, so it may have considerable contribution from the axial $\mathrm{C}-\mathrm{H}$ bend.

For ν_{5} three values are easily selected: 1083-?-1035-1027 cm^{-1}. In d_{2} nothing was observed between 1100 and 1016 cm^{-1}. This may be a case of first-order interaction in d_{2}, with ν_{5} being pushed down to $1016 \mathrm{~cm}^{-1}$ and $\nu_{9 b}$ up to $1100 \mathrm{~cm}^{-1}$. We adopt these two assignments. In $d_{6} \nu_{9 \mathrm{~b}}$ should be higher than $884 \mathrm{~cm}^{-1}$, the value in d_{8}. The next higher depolarized band is $985 \mathrm{~cm}^{-1}$, which we use.

This completes the assignments of the g modes for all four molecules. The product rule ratios for all the various isotopic pairs are given in Table VIII, and are generally satisfactory.

In species e_{g} there are two crossings in going from d_{2} to d_{6}. Vibration $\nu_{9 \mathrm{~b}}$ is higher than ν_{5} in d_{2} and lower than ν_{5} in d_{6}. Similarly ν_{6} is higher than $\nu_{15 \mathrm{~b}}$ in d_{2} and lower than $\nu_{15 \mathrm{~b}}$ in d_{6}. Although in principle this cannot occur because of the noncrossing rule, and we should interchange the designations in d_{6} to remove it, in fact it makes no difference. There are advantages to the present arrangement because it is easier to follow a mode through the sequence of molecules. For example, for ν_{6} of $d_{6}, 704 \mathrm{~cm}^{-1}$ was chosen rather than $758 \mathrm{~cm}^{-1}$ because of its greater intensity and greater solid-solution frequency shift. However, the two have mixed in d_{6} and share these identifying characteristics to some extent. Thus $\Delta \bar{\nu}$ is 8 cm^{-1} for $704 \mathrm{~cm}^{-1}$ and $5 \mathrm{~cm}^{-1}$ for $758 \mathrm{~cm}^{-1}$, whereas for 684 cm^{-1} in d_{8} it is $15 \mathrm{~cm}^{-1}$. The noncrossing rule does not hold in going from d_{6} to d_{8} if the two modes that cross are in different species in d_{8}.

Remaining Raman Bands

Explanations for the remaining Raman bands are included in Tables I-IV. Only binary sum tones were used; ternary combinations were not tried. Difference tones are improbable because even the lowest fundamentals are fairly high. (Even for d_{8} all the fundamentals are greater than $525 \mathrm{~cm}^{-1}$). Furthermore, the infrared spectra of the solids were obtained at $\sim 100 \mathrm{~K}$, making difference tones originating from u levels highly unlikely. All the sum tones which are given are symmetry allowed for our assignments. In many cases there are additional explanations which could be given but which we have not bothered to list. A few comments will be made about each molecule.
$\boldsymbol{d}_{\mathbf{0}}$. There are only three Raman bands of d_{0} which cannot be explained: 2154,2205 , and $2328 \mathrm{~cm}^{-1}$. Since they are all very weak, they do not offer an obstacle.
\boldsymbol{d}_{8}. Many of the remaining bands may be due to d_{7}. The only one we wish to comment on is $2052 \mathrm{~cm}^{-1}$, for which $\rho=0.60$. For $d_{8} \rho$ should be either 0 or 0.75 . We therefore believe that two bands are superimposed here: the overtone of $1027 \mathrm{~cm}^{-1}$ with $\rho=0$ and a band of d_{7} with $\rho=0.75$.
\boldsymbol{d}_{2}. The most serious unanswered questions are how to explain 2985 (intensity 180) and $2246 \mathrm{~cm}^{-1}$ (intensity 50). Neither is due to d_{1}, for we know its spectrum.
d_{6}. The worst problems here are presented by 738 (intensity 35), 847 (35), and $1029 \mathrm{~cm}^{-1}$ (15). The first two may be due to d_{5}.

On the whole we are well satisfied with the assignments for the g modes. We turn now to those for the u fundamentals.

Assignments for the u Modes of $\boldsymbol{d}_{\mathbf{0}}$ and $\boldsymbol{d}_{\mathbf{8}}$

For O_{h} symmetry the u fundamentals are $2 \mathrm{a}_{2 \mathrm{u}}+2 \mathrm{e}_{u}+$ $3 f_{1 u}(I)+2 f_{2 u}$. Only the three $f_{1 u}$ modes are active. All other u fundamentals are forbidden for O_{h}, but allowed in the crystal (Table VIB). We assume that the crystal structure of the samples at $\sim 100 \mathrm{~K}$ used for the infrared measurements is the same as the crystal structure of the solid at room temperature, so that the S_{6} factor group applies also for the infrared data. This is a key assumption. We have no proof that it is correct except that it seems to work.

It is going to be more difficult to assign the u modes than the g ones because most of the u modes are forbidden for O_{h} symmetry. Even when allowed in the crystal by the S_{6} symmetry, they will probably be weak. Also there is no experimental feature to separate $a_{2 u}$ and e_{u} vibrations (Table VIB).
$\mathbf{f}_{1 \mathrm{u}}$. These three fundamentals are the only \mathbf{u} ones allowed for O_{h} symmetry. They are therefore expected to be relatively intense in solution as well as for the solid. In d_{0} they are easily identified as 2978,1230 , and $853 \mathrm{~cm}^{-1}$. In $d_{8} 2240$ and 686 cm^{-1} are surely two of them. Candidates for the third are 1156
and $1083 \mathrm{~cm}^{-1}$, and the product rule shows that $1083 \mathrm{~cm}^{-1}$ is the correct choice. These modes should be doublets in the crystal, and all of them are. (See below concerning the $\mathrm{C}-\mathrm{H}$ stretch.)

C-H Stretches. There are only two u-type $\mathrm{C}-\mathrm{H}$ stretches for O_{h} symmetry: ν_{3} in $a_{2 u}$ and ν_{10} in $\mathrm{f}_{1 \mathrm{u}}$. They present an interesting situation. In d_{0} only one $\mathrm{C}-\mathrm{H}$ stretch is observed in solution as expected ($2977 \mathrm{~cm}^{-1}$), but there are three in the solid: 2965 (s), 2978 (vs), and $2992 \mathrm{~cm}^{-1}$ (vs). It is impossible to account for the third one as a binary sum tone, so another explanation is needed. We recall that, when the symmetry is changed from O_{h} to $S_{6}, \mathrm{f}_{l u}$ modes split into a_{u} and e_{u} components and $a_{2 u}$ modes go to a_{u} (Table VIB). Thus in the crystal three frequencies are allowed. We believe that the e_{u} component is $2978 \mathrm{~cm}^{-1}$, close to the solution value of $2977 \mathrm{~cm}^{-1}$. We further believe that the two a_{u} components have interacted to give 2965 and $2992 \mathrm{~cm}^{-1}$. This would explain why no one of the three is weak; the a_{u} mode derived from the O_{h}-forbidden $a_{2 u}$ has picked up intensity from the a_{u} mode derived from the O_{h}-allowed $\mathrm{f}_{1 \mathrm{u}}$. It also explains why the separations from $2978 \mathrm{~cm}^{-1}$ are nearly equal (15 and $14 \mathrm{~cm}^{-1}$), and rather large compared to our other doublets. In Table I we have designated these a_{μ} bands 2965 and $2992 \mathrm{~cm}^{-1}$ as " 3 and $10\left(\mathrm{a}_{\mathrm{u}}\right)$ " to imply that each is a mixture. It then appears that the unperturbed a_{u} fundamental would have been about $2978 \mathrm{~cm}^{-1}$, almost coincident with the e_{μ} component.

In d_{8} the situation is analogous. There is one band in solution ($2238 \mathrm{~cm}^{-1}$) but three in the solid: 2229 (m), 2240 (vs), and $2248 \mathrm{~cm}^{-1}(\mathrm{~m})$. Again it seems that the e_{u} component is 2240 cm^{-1}, nearly coincident with the solution value, whereas the a_{u} components have interacted and split to give 2229 and 2248 cm^{-1}. We take the unperturbed value to be about $2239 \mathrm{~cm}^{-1}$ and use this for ν_{3}.
$\nu_{8}\left(\mathbf{e}_{\mathrm{u}}\right)$. In $d_{0}, d_{1}, d_{2}, d_{6}$, and d_{8} there are bands at 617,590, 574,538 , and $527 \mathrm{~cm}^{-1}$, respectively, which cannot be ignored. Although they are weak, they are in every compound and are well isolated from other bands. In $d_{0} 617 \mathrm{~cm}^{-1}$ is so useful in explaining sum tones that this alone indicates it to be a fundamental. Since these are the lowest observed bands in each of the compounds, they are probably either ν_{4} or ν_{8}. These are nominally cube deformations, and are expected to be the lowest of the fundamentals.

Species $\mathrm{a}_{2 u}$ of O_{h} has only two fundamentals: a $\mathrm{C}-\mathrm{H}$ stretch which we have just assigned for both d_{0} and d_{8}. and a cube deformation. The product rule can therefore be used to see whether 617 and $527 \mathrm{~cm}^{-1}$ belong to ν_{4} of this species. It is quickly found that they do not. Therefore 617 and $527 \mathrm{~cm}^{-1}$ probably belong to the other nominal cube deformation, ν_{8} of e_{u}. This gets some further support from the following observations. (1) In $d_{0} 617 \mathrm{~cm}^{-1}$ is not a doublet in the solid. This is consistent with not being an f mode (although by no means proof of it). In $d_{8} 527 \mathrm{~cm}^{-1}$ is a doublet, but the higher component ($532 \mathrm{~cm}^{-1}$) is much weaker and can be due to d_{7}. (2) The bands of $d_{2}\left(574 \mathrm{~cm}^{-1}\right)$ and $d_{6}\left(538 \mathrm{~cm}^{-1}\right)$ are singlets in the solid. If they had originated from $\mathrm{f}_{2 \mathrm{u}}$ in d_{0}, they should be pairs of bands. Therefore they seem to have originated from $\mathrm{a}_{2 \mu}$ or e_{u} in d_{0}. Since we have just seen that the product rule eliminates $\mathrm{a}_{2 \mathrm{u}}$, the only possibility left is e_{u}. We therefore assign 617 and $527 \mathrm{~cm}^{-1}$ to ν_{8}.
$\mathbf{f}_{2 \mathrm{u}}$ Modes (ν_{17} and ν_{18}). In d_{0} doublets in the solid are significant. (Unfortunately this is not necessarily true for d_{8} because of the isotopic impurity.) Species $\mathrm{f}_{1 u}$ and $\mathrm{f}_{2 u}$ of O_{h} should give doublets. Since we know the $f_{1 u}$ assignments, we can look for candidates for the two $f_{2 \mu}$ modes of d_{0} which are (a) doublets in the solid and (b) absent in solution. Possibilities are 829 (m), 1036 (m), and $1151 \mathrm{~cm}^{-1}$ (w).

In d_{2} and d_{6} the $f_{2 u}$ modes split into two components because of lowering of the symmetry. We have designated these a and b. Consider the component that is in $\mathrm{a}_{1 \mu}$ of $D_{3 d}$. We note that
the product rule ratio for d_{0} / d_{2} is 1 , and also for d_{6} / d_{8}. Consequently one looks in the infrared spectrum of d_{2} to see whether any of the above three bands is present there too. Two are: ~ 827 (sh) and $1036 \mathrm{~cm}^{-1}$ (w , solid only). This gives us the assignments for $\nu_{17 \mathrm{a}}$ and $\nu_{18 \mathrm{a}}$ in d_{0} and d_{2}.

Next we look in d_{6} and d_{8} for bands which (1) have the same wavenumbers in these two compounds (to give $\tau=1$) and (2) satisfy the product rule for d_{0} / d_{8}. There is only one pair with the same wavenumbers in d_{6} and $d_{8}: 927$ (vw) and $924 \mathrm{~cm}^{-1}$ (vw). Unfortunately, the Raman spectrum of d_{8} has a band at $923 \mathrm{~cm}^{-1}$, so this could be due to d_{7}. However, let us try it. We then have 1036 and $829 \mathrm{~cm}^{-1}$ in d_{0}, and 924 and $x \mathrm{~cm}^{-1}$ in d_{8}. By using the product rule, x is estimated to be $670 \mathrm{~cm}^{-1}$. A weak band here might be hidden under the very strong one at $686 \mathrm{~cm}^{-1}$. However, in d_{6} there is no interference, and there is a band at $674 \mathrm{~cm}^{-1}$, very weak and in the solid only. Therefore we adopt 927 and $674 \mathrm{~cm}^{-1}$ for $\nu_{17 \mathrm{a}}$ and $\nu_{18 \mathrm{a}}$ in d_{6}, and 924 and $674 \mathrm{~cm}^{-1}$ (postulated) in d_{8}. Both assignments for d_{8} are uncertain.
$\mathbf{a}_{2} \mathrm{M}$ Modes (ν_{3} and ν_{4}). We already know ν_{3} in both d_{0} and d_{8}. The product rule then gives the ratio $\nu_{4}\left(d_{0}\right) / \nu_{4}\left(d_{8}\right) \simeq$ 1.045. One can therefore search the spectra for bands giving this ratio. They should be singlets in the solid and missing in solution. The bands may be weak in the solid because they are made allowed only by the crystal symmetry. Furthermore, ν_{4} is nominally a CC_{3} deformation so it is expected to be <1000 cm^{-1}.

An examination of the infrared spectra of d_{0} and d_{8} gives several possibilities. An additional restriction is that one ought to find the mode in d_{2} and d_{6} also. A suitable choice seems to be $839(\mathrm{~m})-838(\mathrm{~s})-807(\mathrm{~m})-807 \mathrm{~cm}^{-1}$ (vvw). This gives a satisfactory τ for d_{0} / d_{8} (1.383 vs. I.414). It also follows the expected selection rules. In solution ν_{4} is forbidden for d_{0} and d_{8}, but is allowed for d_{2} and d_{6}. The observations for solution are absent, s, w, absent.
$\mathbf{e}_{\mathbf{u}}$ Modes (ν_{7} and ν_{8}). We already know ν_{8} in both d_{0} and d_{8}. The product rule then gives the ratio $\nu_{7}\left(d_{0}\right) / \nu_{7}\left(d_{8}\right) \simeq 1.185$. These modes are forbidden in solution and should be singlets in the solid. The only observed bands which satisfy these requirements are 1144 or 1151 in d_{0} and $960 \mathrm{~cm}^{-1}$ in d_{8}. Unfortunately, $1151 \mathrm{~cm}^{-1}$ is a doublet, but it is more intense than $1144 \mathrm{~cm}^{-1}$ and more useful in explaining sum tones so we use it in spite of its weaker companion at $1153 \mathrm{~cm}^{-1}$. In $d_{8} 960$ cm^{-1} is also observed in the Raman spectrum (intensity 140 , $\rho=0.00$). The Raman band is assigned as ν_{2} for d_{7}. This mode of d_{7} is also infrared allowed, and this may account for some of the observed infrared intensity. However, by analogy with the infrared and Raman intensities of ν_{2} in d_{1}, where the symmetry is the same as for d_{7}, the infrared intensity of 960 cm^{-1} seems to have a nother contribution. We therefore believe that $960 \mathrm{~cm}^{-1}$ is also ν_{7} of d_{8}.

u Modes for $\boldsymbol{d}_{\mathbf{2}}$ and $\boldsymbol{d}_{\mathbf{6}}$

These have already been selected for ν_{8} (quite certain), $\nu_{17 \mathrm{a}}$ and $\nu_{18 \mathrm{a}}$ (from $\tau=1$), and ν_{4}. There are three $\mathrm{C}-\mathrm{H}$ stretches: two in a $2_{2 u}$ of $D_{3 d}\left(\nu_{3}\right.$ and $\left.\nu_{10 \mathrm{a}}\right)$ and one in $\mathrm{e}_{\mathrm{u}}\left(\nu_{10 \mathrm{~b}}\right)$. All are allowed for $D_{3 d}$. One of the $a_{2 u}$ modes involves stretching of the $\mathrm{C}-\mathrm{H}$ or $\mathrm{C}-\mathrm{D}$ groups lying on the C_{3} axis. It will therefore be high-low-high-low. We arbitrarily designate this one $\nu_{10 a}$. The other two $\mathrm{C}-\mathrm{H}$ stretches will be high-high-low-low. The following assignments seem reasonable: for ν_{3}, [2978$]$ -2968-2242-[~2239]; for $\nu_{10 \mathrm{a}}, 2978-2240-2974-2240$; for $\nu_{10 \mathrm{~b}}, 2978-2977-2236-2240 \mathrm{~cm}^{-1}$.

Selection of the remaining u modes for d_{2} and d_{6} is a matter of looking for bands with reasonable wavenumbers between those of d_{0} and d_{8}, and then checking with the product rule. Given the assignments for d_{0} and d_{8}, there is not a great deal of choice. Our values are given in Table IX, but do not warrant discussion.

Table XI. Assignments for the Fundamental Vibrations of Cubane- d_{1} Compared with $-d_{0}$ and $-d_{2}{ }^{\prime \prime}$

$C_{3 c}$ sym			assignment		
species	sel rules	no.	d_{0}	d_{1}	d_{2}
a_{1}	$\mathrm{R}(\mathrm{p}), 1$	1	2995	2993	2993
		2	1002	996	991
		13 a	2970	2969	2237
		14 a	1182	1174	1168
		15 a	821	816	821
		16:	665	~ 659	651
		3	[~2978]	2977	2968
		4	839	844	838
		10a	2978	2240	2240
		11a	1230	1219	1201
		12a	8.53	853	851
a?		9a	1130	1132	(1130)
		17a	1036	1036	1036
		18 a	829	834	~ 827
c	R(dp), I	5	1083	1062	1016
		6	912	898	875
		9 b	1130	1101	1100
		13 b	2970	\{2969\}	2970
		14b	1182	1179	1174
		15b	821	826	738
		16b	665	652	632
		7	1151	1145	1109
		8	617	590	574
		10 b	2978	\{2977\}	2977
		11 b	1230	1225	1222
		12b	853	847	844
		17b	1036	1002	995
		18b	829	722	711

" Braces indicate value used twice. See footnote b, Table IX.

It may be noted that $\nu_{18 \mathrm{~b}}$ is $651 \mathrm{~cm}^{-1}$ in d_{6} and rises to 674 cm^{-1} in d_{8}. This can be rationalized as follows. The $651-\mathrm{cm}^{-1}$ value is abnormally low in d_{6} because $\nu_{18 \mathrm{~b}}$ has had first-order interaction with $\nu_{12 \mathrm{~b}}$ in the same species, making the latter abnormally high at $786 \mathrm{~cm}^{-1}$. In d_{8} this interaction does not occur because $\nu_{18 \mathrm{~b}}$ and $\nu_{12 \mathrm{~b}}$ are in different species. Consequently $\nu_{18 \mathrm{~b}}$ moves up from 651 to $674 \mathrm{~cm}^{-1}$, and $\nu_{12 \mathrm{~b}}$ has a $100-\mathrm{cm}^{-1}$ drop from 786 to $686 \mathrm{~cm}^{-1}$.

This completes the assignments of the u modes. The product rule ratios in Table VIII are on the whole quite good. The weakest assignments for d_{0} and d_{8} are (a) $1151 \mathrm{~cm}^{-1}$ for d_{0} and (b) 960,924 , and $674 \mathrm{~cm}^{-1}$ for d_{8}.

Remaining Infrared Bands

Explanations for most of these are included in Tables I-IV. The general comments concerning remaining Raman bands apply here too. For d_{0} there are six infrared bands for which we cannot supply an explanation. The only serious problem is presented by $1235 \mathrm{~cm}^{-1}$ because of its medium intensity. The other five bands are all very weak. For d_{8} there are a number of infrared bands for which we cannot account, but all are weak and we know that there is considerable isotopic impurity. Similarly d_{2} and d_{6} do not present any serious problems.

Assignments for \boldsymbol{d}_{1}

Because this molecule has a different symmetry from the others, it is discussed separately. Under $C_{3 v}$ the fundamentals are $11 a_{1}(R, I)+3 a_{2}+14 e(R, I)$. Our assignments are given in Tables V and XI. The assignments for d_{0} and d_{2} provide a useful guide because they will bracket those for d_{1}; they are therefore included in Table XI.

One of the $\mathrm{C}-\mathrm{H}$ stretches of d_{0} will drop to about $2250 \mathrm{~cm}^{-1}$ in d_{1}. We arbitrarily call it ν_{10} a, although it could equally well be termed $\nu_{13 \mathrm{a}}$. The other C-H stretches are fairly obvious: ν_{1} 2993, ν_{3} and $\nu_{10 \mathrm{~b}} 2977$, and $\nu_{13 \mathrm{a}}$ and $\nu_{13 \mathrm{~b}} 2969 \mathrm{~cm}^{-1}$.

There is no doubt that ν_{2} is $996 \mathrm{~cm}^{-1}$. From the large solid-to-solution shift of the $898-\mathrm{cm}^{-1}$ band, this is clearly ν_{6} (Table XB). The large infrared intensities confirm 1219 and $1225 \mathrm{~cm}^{-1}$ as $\nu_{11 \mathrm{a}}$ and $\nu_{1 \mid \mathrm{b}}$, and 847 and $853 \mathrm{~cm}^{-1}$ as $\nu_{12 \mathrm{~b}}$ and $\nu_{12 \mathrm{a}}$. The reasons for these particular $\mathrm{a}-\mathrm{b}$ assignments are as follows.
(1) ν_{11}. The polarized Raman sum tone at $2212 \mathrm{~cm}^{-1}$ can be explained as $996+1217=2213 \mathrm{~cm}^{-1}$. Since both 996 and $2213 \mathrm{~cm}^{-1}$ are totally symmetrical, $1217 \mathrm{~cm}^{-1}$ must be also. Therefore $1217 \mathrm{~cm}^{-1}$ ($1219 \mathrm{~cm}^{-1}$ in the infrared) is assigned to $\nu_{11 \mathrm{a}}$, leaving $1225 \mathrm{~cm}^{-1}$ for $\nu_{1 / \mathrm{b}}$.
(2) ν_{12}. The Raman band at $844 \mathrm{~cm}^{-1}$ has $\rho=0.56$. Although this value is possible for a $C_{3 c}$ molecule, the deviation of d_{1} from O_{h} symmetry is small enough so that all the other observed ρ 's are either 0.75 or <0.26. We therefore believe that the value 0.56 indicates an overlap of $\nu_{4}(\mathrm{p})$ with $\nu_{12 \mathrm{~b}}(\mathrm{dp})$. This leaves $853 \mathrm{~cm}^{-1}$ for $\nu_{12 \mathrm{a}}$. Incidentally this makes $\nu_{4} 5 \mathrm{~cm}^{-1}$ higher in d_{1} than in d_{0} or d_{2}, possibly owing to interaction with the $816-\mathrm{cm}^{-1}$ band which can occur in d_{1} but not in d_{0} or d_{2}. The $816-\mathrm{cm}^{-1}$ band is assigned to $\nu_{15 a}$ because it may be polarized. It is $5 \mathrm{~cm}^{-1}$ lower than expected, supporting the interaction just suggested.

The Raman band at $1002 \mathrm{~cm}^{-1}$ has the correct value for d_{0} impurity, but for two reasons we believe that it is also overlapping a band of d_{1}. (1) For d_{0}, ρ should be zero rather than the observed 0.26. (2) If $1002 \mathrm{~cm}^{-1}$ is due to d_{0}, it should not appear in the infrared spectrum, whereas it is present for both solid and solution. We therefore suggest that the infrared band is due to $\nu_{17 \mathrm{~b}}$, and that the Raman one is a superposition of $\nu_{17 \mathrm{~b}}$ of d_{1} and ν_{2} of d_{0}.

The three a_{2} modes are forbidden for the free molecule. However, they are allowed by the symmetry of the crystal, and we believe that all three occur weakly in the spectrum of the solid only. They are $\nu_{9 \mathrm{a}} 1132, \nu_{17 \mathrm{a}} 1036$, and $\nu_{18 \mathrm{a}} 834 \mathrm{~cm}^{-1}$. The first one is derived from a g mode of d_{0} and d_{2}, and is found in the Raman spectrum only. The other two are derived from u modes, and are seen only in the infrared spectrum. This is pleasing support.

There is no need to discuss the remaining assignments; they are made by analogy with the d_{0} and d_{2}. ones.

Most of the remaining bands can be satisfactorily explained. (The general remarks concerning remaining Raman bands for the other four molecules apply here too.) The only serious problem is presented by the Raman band at $1027 \mathrm{~cm}^{-1}$ (intensity $28, \rho=0.01$). Should this replace one of our other a_{1} assignments, and by implication lead us to change something in d_{0} and d_{2} ? Examination of Table XI leads to the conclusion that there is only one a_{1} fundamental which could be changed, viz., $\nu_{4}\left(844 \mathrm{~cm}^{-1}\right)$. However, replacing it with $1027 \mathrm{~cm}^{-1}$ offers more problems in the other four molecules than it solves, so we conclude that $1027 \mathrm{~cm}^{-1}$ is not an a_{1} fundamental. In d_{0} there is a weak band at this position which is ascribed to an impurity. Possibly in d_{1} it is also due to the same impurity, although the intensity is disturbingly high for that. We do not have a satisfactory explanation.

Discussion of the Results

It has been possible to make assignments for all the fundamentals of all five molecules- 120 modes in all. For d_{0} and d_{8} we are confident that the assignments of the g modes are correct. Some of their u modes are uncertain-especially ν_{7} for d_{0} and ν_{7}, ν_{17}, and ν_{18} for d_{8}. There are some additional questions about the assignments of d_{1}, d_{2}, and d_{6}. On the whole, though, it is both surprising and gratifying that one can do so well for d_{0} and d_{8}. This is a consequence of the fortunate crystal structure, and to having data for the intermediate isotopic compounds. Both provided essential information. It is perhaps worth noting again, in hindsight, that the spectra of d_{0} and d_{8} in solution do follow the selection rules for O_{h} sym-
metry, whereas in the polycrystalline solid they follow those for S_{6}.

Cubane may be regarded as six C_{4} rings locked together to form a cube. It is a surprising and curious coincidence that the breathing mode of the (nonplanar) cyclobutane ring, 1004.5 $\mathrm{cm}^{-1},{ }^{10}$ is only $3 \mathrm{~cm}^{-1}$ different from the breathing mode of cubane ($1002 \mathrm{~cm}^{-1}$).

It was our expectation that the spectra would have some unusual features because of the severely strained bond angles at the cube corners. To our surprise there is no obvious evidence of this. The modes of d_{0} come about where one would expect by analogy with unstrained, saturated hydrocarbons, and its spectrum seems to be quite normal. For example, the frequency of a $\mathrm{C}-\mathrm{H}$ stretch usually rises as the $\mathrm{C}-\mathrm{C}-\mathrm{C}$ bond angle of the saturated carbon becomes smaller. Thus the highest $\mathrm{C}-\mathrm{H}$ stretch in cyclohexane is $2963 \mathrm{~cm}^{-1},{ }^{11}$ in cyclopentane is 2966 $\mathrm{cm}^{-1},{ }^{12}$ in cyclobutane is $2987 \mathrm{~cm}^{-1},{ }^{10}$ and in cyclopropane the four modes range between 3025 and $3102 \mathrm{~cm}^{-1}$. 13 Many other examples could be cited, but this is enough to show the trend. We had expected to find at least some of the $\mathrm{C}-\mathrm{H}$ stretches in cubane above $3000 \mathrm{~cm}^{-1}$, but the highest is 2995 cm^{-1}. This is only a little higher than the highest in cyclobutane. A fairer comparison is to use the average of all the $\mathrm{C}-\mathrm{H}$ stretches weighted for degeneracy. This average is $2916 \mathrm{~cm}^{-1}$ for cyclohexane, $2926 \mathrm{~cm}^{-1}$ for cyclopentane (averaged over the eight known stretches), $2939 \mathrm{~cm}^{-1}$ for cyclobutane, 2977 cm^{-1} for cubane, and $3059 \mathrm{~cm}^{-1}$ for cyclopropane. This does reflect the strain in cubane.

It may be that the force field will show the influence of bond strain more clearly. One of us (E.F.M.) expects to publish a normal-coordinate calculation for cubane. We hope that this
will give quantitative information on how normal the bonds are. For now the most we can say is that the spectrum of cubane seems remarkably similar to that of the other saturated hydrocarbons.

There is one interesting point of difference, however. Cubane has no low molecular modes; its lowest fundamental is 617 cm^{-1}. The C_{8} cube is a "tight" system because it is bonded three dimensionally, and it is therefore not easy to deform even if all the bonds are single ones. By contrast, benzene, although having much stronger $\mathrm{C}-\mathrm{C}$ bonds, is considerably more floppy and has an out-of-plane bending mode at $404 \mathrm{~cm}^{-1}$.

References and Notes

(1) (a) The Flinders University of South Australia. (b) University of Pittsburgh. (c) A portion of this paper is from a thesis to be submitted by Gerald L. Jones in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the University of Pittsburgh.
(2) The Chemical Abstracts name for cubane is pentacyclo $\left[4.2 .0 .0^{2,5} \cdot 0^{3,8} \cdot 0^{4,7}\right]$ octane. It is Chemical Abstracts compound 277-10-1.
(3) Eaton, P. E.; Cole, T. W. Jr. J. Am. Chem. Soc. 1964, 86, 3157-3158.
(4) Fleischer, E. B. J. Am. Chem. Soc. 1964, 86, 3889-3890.
(5) Bischof, P.; Eaton, P. E., et al. Helv. Chim. Acta 1978, 61, 547-557.
(6) Della, E. W.; Patney, H. K. Aust. J. Chem. 1976, 29, $2469-2475$.
(7) If the vapor pressure equation given by Kybett, B. D., et al. J. Am. Chem. Soc. $1966,88,626$, is extrapolated from 262 to 295 K , one calculates a vapor pressure of 0.6 Torr at 295 K .
(8) Miller, F. A.; Harney, B. M.; Tyrrell, J. Spectrochim. Acta, Part A 1971, 27, 1003-1018.
(9) Herzberg, G. 'Infrared and Raman Spectra of Polyatomic Molecules': Van Nostrand: Princeton, N.J., 1945; p 231.
(10) Miller, F. A.; Capwell, R. J.; Lord, R. C.; Rea, D. C. Spectrochim. Acta, Part A 1972, 28, 603-618.
(11) Wiberg, K. B.; Shrake, A. Spectrochim. Acta, Part A 1971, 27, 1139 1151.
(12) Miller, F. A.; Inskeep, R. G. J. Chem. Phys. 1950, 18, 1519-1531.
(13) (a) Baker, A. W.; Lord, R. C. J. Chem. Phys. 1955, 23, 1636-1643. (b) Duncan, J. L.; McKean, D. C. J. Mol. Spectrosc. 1968, 27, 117-142.

${ }^{1} \mathrm{H},{ }^{2} \mathrm{H}$, and ${ }^{13} \mathrm{C}$ ENDOR Studies of Phenalenyl Radicals in Nematic and Smectic Mesophases of Liquid Crystals

B. Kirste, H. Kurreck,* H.-J. Fey, Ch. Hass, and G. Schlomp
Contribution from the Institut fur Organische Chemie, Freie Universitat Berlin, Takustr. 3, I000 Berlin 33, West Germany. Received April 16, 1979

Abstract

ESR, ${ }^{1} \mathrm{H},{ }^{2} \mathrm{H}$, and ${ }^{13} \mathrm{C}$ ENDOR and TRIPLE experiments have been performed on labeled chloro- and methylphenalenyls ("perinaphthenyls") in isotropic, nematic, and smectic phases of liquid crystals. Hyperfine coupling constant shifts were measured and the assignment to molecular positions is discussed. The results suggest that the substituents cause additional alignment effects of the radicals. Smectic A phases have proved to be advantageous as compared to nematic phases in these studies. The first successful detection of ${ }^{13} \mathrm{C}$ ENDOR lines in a nematic mesophase is reported. Quadrupole splittings were observed for all of the ? H ENDOR lines, and the complete quadrupole coupling tensor of the ring deuterons ($e^{2} q Q / h=(174 \pm$ 10) $\mathrm{kHz}, \eta=0.08 \pm 0.04)$ and the quadrupole coupling of the methyl deuterons $\left(e^{2} q Q / h \sim 130 \mathrm{kHz}\right)$ could be determined.

Introduction

Information about the anisotropic hyperfine or \mathbf{g}-tensor contributions can in principle be obtained from ESR spectra of organic radicals imbedded in amorphous or polycrystalline solid matrices. However, these spectra usually are very complex and poorly resolved. In isotropic fluid solution, on the other hand, the angular-dependent contributions are averaged out by the Brownian motion resulting in well-resolved ESR spectra, but only the isotropic contact hyperfine interactions and the isotropic g factor can be observed and all information about the anisotropic interactions is lost.

Previously it could be shown in a variety of papers that this lack can be overcome by using liquid crystals as solvents. ${ }^{\text {I }}$ The
long axes of the solvent molecules within the nematic liquid crystals tend to be parallel, and they are macroscopically aligned by applying a magnetic field ($\sim 0.3 \mathrm{~T}$). Consequently, the molecular motion of dissolved nonspherical molecules is no longer isotropic, and the ordering of the solute will more or less reflect the ordering of the solvent. This alignment of the radical under study constitutes nonvanishing contributions from the anisotropic hyperfine tensors resulting in quite different hyperfine coupling constants as compared to the isotropic splittings. Unambiguous evaluation of the shifts caused by the anisotropic motion of the molecules calls for the proper determination of the respective isotropic hyperfine coupling constants under the same experimental conditions. A more approximate measurement of the isotropic couplings is

